FIRVENA

Modul für eine MP-Bus Kommunikation, bestimmt für das Einlesen von bis 4 Elementen weiter in das Steuersystem wia Kommunikation MP oder BACnet MS/TP

- Schnittstelle MP-Bus
- Schnittstelle BACnet MS/TP (RS485)
- aktive / passive Sensoren, bzw. Schalter
- bis zu 4 Elemente anschliesbar

Technische Daten		
Elektrische Daten	Nennspannung	AC 24 V, 50/60 Hz / DC 24 V
	Funktionsbereich	AC 19.2 28.8 V / DC 21.6 28.8 V
	Dimensionierung	2 VA (ohne angeschlossene Elemente)
	Anschluss Speisung	Steck-Schraubklemmen, 3-polig
	MP-Bus	zusammen mit Speisung
	Elemente	Steck-Schraubklemmen, 2 x 4-polig
		(alle Klemmen passend für Max. 2,5 mm²,
		am Gehäuse sind 7 Pg 25 mm)
	BACnet MS/TP	Steck-Schraubklemmen, 3-polig
Funktionsdaten	unterstützte Elemente	aktive / passive Sensoren, Schalter
	Anzahl der Elemente	Max. 4 Elemente
	Kommunikation MP-Bus	Belimo MP-Bus, Master-Slave 1200 Baud
	Kommunikation BACnet	MS/TP (RS485), Master
BACnet MS/TP	Anzahl der Geräte auf RS 485	Max. 32 (ohne Repeater)
	Baudrate	9600, 19200, 38400, 76800 Baud,
		Einstellung mit DIP's
	Antworte in Kommunikation	4100 ms, Verspätung durch Register
	Belastung RS 485 (Terminator)	150 Ohm, Einstellung mit DIP's
Sicherheit	Schutzklasse	III Schutzkleinspannung
	Schutzart	IP65
	Feuchte	CE nach 89/336
	Umgebungstemperatur	0 +50 °C
	Gehäusematerial	selbstlöschend ABS, halogenfrei
Montage / Abmessungen / Gewicht	Montage	Gehäuse für Wandmontage
	Abmessungen	siehe Seite 5
	Gewicht	ca. 255 g

Sicherheitshinweise

- $\bullet \ \ \text{Das Ger\"{a}t enth\"{a}lt keine durch den Anwender austauschbaren oder reparierbaren Teile.}$
- · Die Installation darf nur durch geschultes Personal erfolgen!
- Speisung anschliesen erst nach komplete Verdrahtung.

Produktmerkmale

Wirkungsweise

Mit MP24-Al4-BAC werden Werte von einzelnen Sensoren, bzw. Schalter ausgelesen und die Werte digitalisiert und wia MP-Bus, oder über Schnittstelle RS 485 wia BACnet MS/TP weiter in das übergeordnete Steuersystem weitergeleitet. Gemessene Werte sind an beiden Buskommunikationen gleichzeitig lösbar, jedoch bei Wahl der Messung hat Buskommunikation MP-Bus eine Priorität. Aus Sicht der MP-Bus Kommunikation verhaltet sich die Anlage als 4 Antriebe im Netzwerk MP-Bus, wobei genutzt werden lediglich Werte von dem gewällten angeschlossenem Geber.

Verwendung MP Adresse

Die Anlage kann auf zweier Art adressiert werden. Es ist möglich die Adresse lediglich für den ersten Eingang zu vergeben, oder jeder Eingang kann eine eigenständige MP Adresse haben. Wenn jeder Eingang einzeln adressiert wird, kann Befehl MP_AD_Convert benutzt werden. Wenn die gesamte Anlage lediglich eine MP Adresse hat, wird für die Beschaffung von gemessenen Werten Befehl MP_Peek benutzt. Mit Befehl MP_Poke wird Typ der Messung für einzelne Eingänge eingestellt. Adressen für gemessene Werten und Einstellregister sind weiter in der Tabelle Nr. 1 beschrieben.

Variante der Kommunikation

- 1. Wia Kommunikation BACnet MS/TP (RS 485), wo einzelne Eingänge der Anlage, sowie deren Werte sind ausgelesen, bzw. in Objecttabellen eingetragen (siehe Tabelle Nr. 2).
- 2. Wia Steuersystem mit Implementation des Protokolls MP-Bus, wo es möglich ist die Werte mit befehlen MP_Peek und MP_Poke auszulesen und einzuschreiben.

Sensoreinbindung

An jeden der vier Eingänge ist es möglich einen Elementen anzuschliessen. Es kann sich um einen Widerstandssensor (Pt1000, Ni1000 oder NTC), aktiven Sensor (Ausgang DC 0...10 V) oder Schalter handeln. So können Analogsignale der Elementen einfach digitalisiert werden und wia Modul MP24-Al4-BAC über Netzwerk MP-Bus/BACnet weitergeleitete werden.

Aufteilung der Register MP-Bus		(Tabelle Nr. 1)			
Adresse ((hex)	Beschreibung	Format	Länge	Schreiben/lesen
0:	x000	AI-1 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0:	x002	AI-2 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0:	x004	AI-3 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0.	x006	AI-4 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0:	x008	AI-5 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0:	x00A	AI-6 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0>	x00C	AI-7 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0)	x00E	AI-8 (R=065000Ω, U=015000mV, switch 0,1)	0-65000	2 Byte	lesen
0.	x010	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0:	x014	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0:	x018	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0>	x01C	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0:	x020	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0:	x024	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0:	x028	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0>	x02C	0 - None, 1 - U, 2,3 - R, 4 - Switch	0,1,2,3,4	1 Byte	schreiben/lesen
0xl	0050	SW-Version	0-255	1Byte	lesen
	0051	Seriennummer		7 Byte	lesen

Priorität MP-Bus Protokoll gegenüber dem Protokoll BACnet

Wenn beide Protokolle einen Analogeingang steuern, so hat das Protokoll MP-Bus eine Priorität. Gemessene Werte werden in beiden Protokollen gleich dargestellt, jedoch nach Umschalten des Eingangs wird das Protokoll BACnet ausgeschaltet. Einstellung in der Objekt SENSOR_TYPE für Einstellung der Messung (Spannung, Widerstand, Schalter) können in diesem Modus nicht überschrieben werden. Dargestellte Werte entsprechen dann Typ der Messung, welches ist durch die Kommunikation MP-Bus ausgewählt.

Modul für bis 4 Sensoren oder Kontakte nach MP-Bus / BACnet MS/TP

Aufteilung der Obje	ıfteilung der Objekte in BACnet		
	Object Name	Object Type / Instance	

CRIC III DAOIICI	(Tabelle IVI. 2)			
Object Name	Object Type / Instance	Description	Values	Default
Device name	Device [x]		-	-
OFFSET_DEV_ID	Analog Value [1]		4194175	1000
COV_MODE	Multi-State Value [1]		OFF LOCAL GLOBAL	OFF
SENSOR_TYPE_[n]	Multi-State Value [n*100]		NONE ACTIVE PASSIVE_1K PASSIVE_120K SWITCH PT1000_C NI1000_C NTC_10K_C	NONE
ACT_VALUE_[n]	Analog Input [n*100]		0 65000	
WTD_VALUE_[n]	Analog Input [1000]		0 100	
DEV_ID	Analog Input [1001]		1 4194302	
SWITCH_STATE_[n]	Binary Input [n*100]		0 1	

Datapoint	BACnet Object	Description
Sensor Value	Analog Input [n*100]	
	Binary Input [n*100]	
Sensor Type	Multi-State Value [n*100]	
Switch	Binary Input [n*100]	
Offset ID	Analog Value [1]	
COV Mode	Multi-State Value [1]	

Montage und Inbetriebnahme

Montage und Verdrahtung

Die Anlage ist in einem Installationsschachtel untergebracht und ist für eine Wandmontage bestimmt. Die Drahtverbindung wia Steck-Schraubklemmen.

Inbetriebnahme und Adressierung

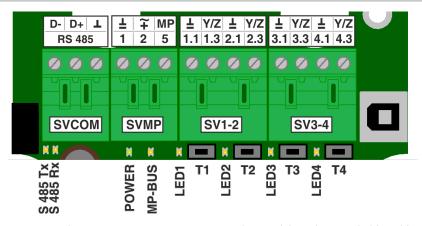
Vor Inbetriebnahme der Anlage sind einzelne verwendete Elemente zu adressieren. Zu den einzelnen können die Adressen über Belimo PC-Tool, Paramatriergerät ZTH EU zugeordnet werden, oder die Elemente können direkt von dem Steuersystem mit Taste MP24-AI4-BAC oder wia einmaligeres Serienummer adressiert werden.

Funktion und Handadressierung

Die Anlage beinhaltet eine Anschlussplatte SVMP für Anschluss der MP-Bus Kommunikation, sowie weitere Anschlussplatte SV1-2, SV3-4 für einzelne Analoganschlüsse für Anschluss von Temperaturgeber, Schalter.

Jedes von diesen Eingängen (gesamt 4) ha eine eigene Produktionsnummer, genau wie bei den Antrieben mit MP-Bus Kommunikation. Anhand der Produktionsnummer kann zu jedem beliebten Eingang eine wahlbare MP Adresse zugeordnet werden. Für diesen Zweck hat auch jeder Eingang eine eigene Adressiertaste T1..T4 und eine gelbe LED Diode LED1..LED4. Die MP Adressierung läuft also standardmäßig wie bei den Antrieben. Das bedeutet, wenn die Bedienungseinheit eine Anforderung der MP Adressierung mit bestimmte Adresse sendet, dann nach dem Tastendruck wird zu dem Eingang eine MP Adresse zugeordnet, zu welcher die Taste angehört. Die Werkseinstellung Adressen ist MP1 bis MP4.

Bedeutung der Seriennummer


Die Seriennummer entspricht dem Standard der MP-Bus Kommunikation. Letzte Byte 7 entspricht der Eingangsnummer.

Ву	te 1, 2		Byt	te 3, 4	Byte 5	Byte 6	Byte 7
Zero prefix	Year	Week	Day	Serial No.	Manufacturer	Device family	Test station
0	14	30	2	0001	255	247	1-4

Montage und Inbetriebnahme

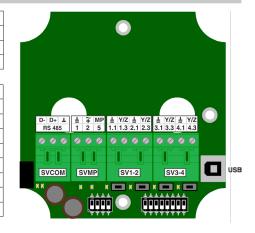
(Fortsetzung)

Unterschützte Befehle der MP-Bus

MP_Get_SeriesNo 50 to read out serial number, needed for addressing MP Set MP Address to set the MP-adress 38 13 to check out MP-adress

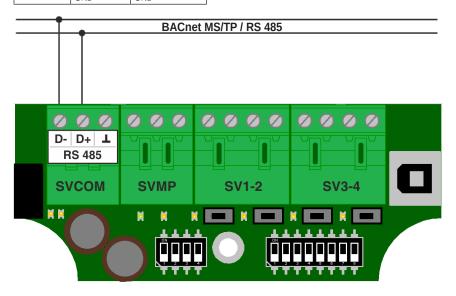
MP Get MP Address MP Get Firmware 82 to read out SW-version MP_AD_Convert to read out AD-converters 4 MP_Get_Forced_Control 75 to read out external switch MP_Peek to read out memory 1

MP_Poke 2 write to memory


Elektrische Installation

Klemmen für MP-Bus und Speisung

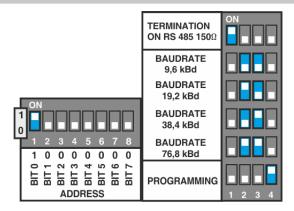
Klemme	Bedeutung	Beschreibung
1	- I	GND für MP-Bus
2	+ 24 V AC/DC	Speisung für MP-Bus
5	MP	Kommunikation MP-Bus


Klemmen für Sensoren und Schalter

Klemme	Bedeutung	Element
1.1	- I	GND für Element 1
1.3	YIZ	Signal für Element 1
2.1	- I	GND für Element 2
2.3	YIZ	Signal für Element 2
3.1	- I	GND für Element 3
3.3	YIZ	Signal für Element 3
4.1	- I	GND für Element 4
4.3	YIZ	Signal für Element 4

Klemmen für RS 485 BACnet MS/TP

Klemme	Bedeutung	Beschreibung
RS 485	D+	Daten +
	D-	Daten -
	GND	GND



Elektrische Installation

(Fortsetzung)

Funktion der DIP's

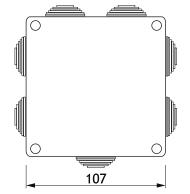
Anschlussschema der Elemente

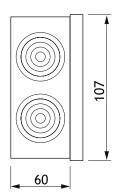
1 Anschluss von passiven Sensore (Pt1000, Ni1000, NTC)

Sensortyp	Temperaturbereich	Widerstand	Auflösung
Ni1000	-28 +98°C	850 1600 Ω	1 Ω
Pt1000	-35 +155°C	850 1600 Ω	1 Ω
NTC	-10 +160°C (nach Typ)	200 Ω 60 kΩ	1 Ω

2 Anschluss von aktiven Sensore

- Speisung AC/DC 24V
- Ausgangsignal DC 0 ... 10 V (max. DC 0 ... 32 V)
- Auflösung 1 mV


3 Anschluss von externen Schalter (z.B. Überdrucksensor)


• Schaltstrom 10 mA 24 V

Abmessungen [mm]

Massbilder

